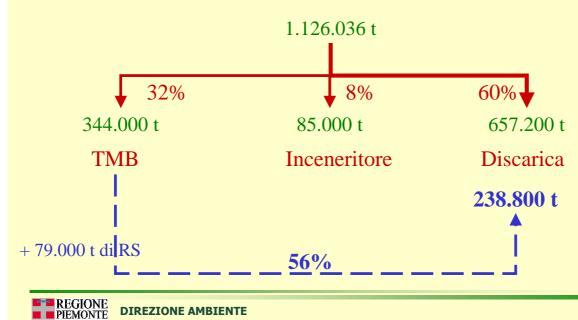


Trattamento meccanico - biologico dei Rifiuti Urbani Esperienze in Regione Piemonte

Agata MILONE

Torino 30 novembre 2010



Regione Piemonte - Dati 2009

Produzione Rifiuti Urbani = 2.234.600 t

$$% RD = 49,6%$$

Rifiuti Urbani Indifferenziati

Flussi del Rifiuto Indifferenziato in Piemonte – 2009

Dotazione Impiantistica - 2009

Impianti

di Selezione/Biostabilizzazione

Prov	Comune	Potenzialità autorizzata (t/a)	Rifiuto in ingresso 2009 (t)	Tipologia
AL	Alessandria	120.000 t/a	107.904 t	S + BS
AL	Casale Monferrato	32.000 t/a	9.992 t	S + BS
AL	Novi Ligure	40.200 t/a	42.398 t	S
AL	Tortona	26.800 t/a	18.229 t	S + BS
CN	Magliano Alpi	50.000 t/a	25.212 t	S + BS
CN	Sommariva Bosco	66.000 t/a	25.968 t	S + BS
CN	Borgo San Dalmazzo	63.276 t/a	47.861 t	S + BS (R ind + Fraz. Org)
AT	Asti - Valterza	67.000 t/a	34.569 t	S + BS + CDR

Tot regionale 465.000 t/a 312.100 t/a

Impianti

di Bioessiccazione

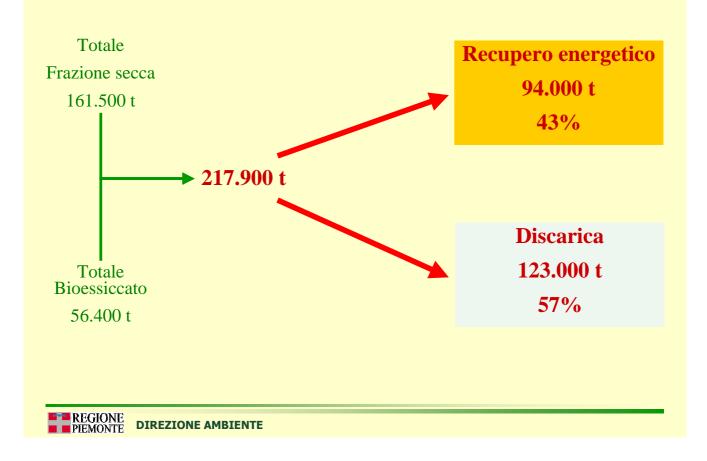
Prov	Comune	Potenzialità autorizzata (t/a)	Rifiuto in ingresso 2009 (t)	Tipologia
ВІ	Cavaglia'	116.314 t/a (RU+RS)	49.845 t	S+BE
CN	Villafalletto	70.000 t/a	61.001 t	BE + CDR

Tot regionale 186.314 t/a 110.500 t/a

Impianti

di Produzione di CDR

Prov	Comune	Potenzialità autorizzata (t/a)	Rifiuto in ingresso 2009 (t)	Tipologia
AL	Alessandria	30.000 t/a	18.150	CDR
CN	Roccavione	29.500 t/a di cui 24.000 t/a di CDR	21.075 (qtà al 30/09/2009)	CDR
		02.1	00/00/2000)	


Tot regionale 59.500 t/a 39.000 t/a

DIREZIONE AMBIENTE

Focus sugli impianti TMB - 2009 RS RU **TOTALE** 100% 344.000 t 79.000 t 423.000 t **27%** FS:14.100 t Fuori Regione FS: 86.700 t **Biostabilizzazione** SEL/Biostabilizzaz 56% FS: 60.700 t BS:90.900 t Discarica Scarti 19% prod CDR 238.800 t BE: 19.700 t Biossi<mark>cazione</mark> BE:36.700 t Bioessicazione ► 110.500 t Scarti: 24.500 t REGIONE PIEMONTE **DIREZIONE AMBIENTE**

Destinazione di Frazione Secca/Bioessiccato - 2009

Proposta di Progetto di Piano Regionale

Tipologie impiantistiche sottoposte a VAS

- Compostaggio;
- Trattamento meccanico Biologico Bioessiccazione
- Trattamento Meccanico Biologico Biostabilizzazione
- Trattamento Meccanico Biologico Produzione di CDR
- Digestione Anaerobica
- Discarica di Rifiuti non pericolosi
- Termovalorizzatori a Griglia
- Termovalorizzatori a Letto Fluido
- Co-combustione

Parametri ambientali utilizzati per la definizione degli indicatori

Per ogni impianto sono stati presi in considerazione un set di parametri **chimico** – **fisici** che permettono di valutare i seguenti aspetti:

√ cc	nsumi	e	recuperi	energetici
------	-------	---	----------	------------

√ emissioni atmosferiche

√ emissioni idriche

✓ consumi idrici

✓ rifiuti solidi generati

Consumo di energia elettrica	Consumo di carburanti	Consumo di acqua
polveri totali	SOT	NH ₃
H₂S	Sox	NOx
HF	нсі	N₂O
PCDD	Cd	Hg
Pb	IPA	со
CO ₂	CH₄	Cd Tl

I valori relativi ai parametri vengono utilizzati per calcolare gli indicatori standardizzati che permettono di definire l'impatto ambientale di ciascun impianto.

Quantità di scorie Energia prodotta termica compost prodotto fanghi a compostaggio O₂ Energia termica

prodotta

Indicatori standardizzati di impatto

- potenziale di tossicità umana
- potenziale di tossicità per l'ambiente acquatico
- potenziale di riscaldamento totale
- potenziale di acidificazione
- potenziale di eutrofizzazione
- potenziale di creazione fotochimica di ozono

CO₂ En. elettrica prodotta	COD dep.	Fosforo tot. dep.
N ammoniacale dep.	N tot dep.*	Cd dep.*
Ni dep.*	Zn dep.*	Cu dep.*
As dep.*	Cr dep.*	As scorie dep.*
Pb scorie dep*	Cd scorie dep*	Cr scorie dep*
Cu scorie dep*	Ni scorie dep*	Zn scorie dep*
Pb ceneri dep*	Cd ceneri dep*	Cr ceneri dep*
Cu ceneri dep*	Ni ceneri dep*	Zn ceneri dep*
CO ₂ risparmiata	CO ₂ risparmiata	
(cocombustione)	(compost)	-

DIREZIONE AMBIENTE

La VAS (D.G.R. n.34-13218 dell'8 febbraio 2010) ci ha permesso di effettuare un:

Confronto tra gli impatti ambientali di:

- termovalorizzazione del rifiuto "tal quale"
- termovalorizzazione del rifiuto trattato

Minore impatto ambientale nella termovalorizzazione diretta del rifiuto "tal quale" rispetto a pretrattamento e successiva termovalorizzazione

Confronto tra gli impatti ambientali di:

- termovalorizzazione del rifiuto "tal quale"
- co incenerimento del CDR

Minor impatto ambientale nel co- incenerimento (nei territori dove sono presenti impianti industriali es. cementifici), rispetto alla termovalorizzazione del rifiuto "tal quale"